**QUESTION**

A prime number is Super Prime if it is a sum of two primes. Find all the Super Primes upto N\n\nInput:\n\nThe first line of input contains an integer T denoting the number of test cases.\n\nEach line of test case contains an integer N as described in the problem\n\nOutput:\n\nFor each test case output a single line containing the total number of Super Primes upto N.\n\n\nConstraints:\n\n1<=T<=10000\n\n1<=N<=10000000.

**ANSWER**

```
#include<bits/stdc++.h>
using namespace std;
bool SieveOfEratosthenes(int n, bool isPrime[])
{
isPrime[0] = isPrime[1] = false;
for (int i=2; i<=n; i++)
isPrime[i] = true;
for (int p=2; p*p<=n; p++)
{
if (isPrime[p] == true)
{
for (int i=p*2; i<=n; i += p)
isPrime[i] = false;
}
}
}
void superPrimes(int n)
{
bool isPrime[n+1];
int cnt=0;
SieveOfEratosthenes(n, isPrime);
int primes[n+1], j = 0;
for (int p=2; p<=n; p++)
if (isPrime[p])
primes[j++] = p;
for (int k=0; k<j; k++)
if (isPrime[k+1] && primes[k]<n)
{
cnt++;
}
cout << cnt<<endl;
}
int main()
{
int n,t;
cin>>t;
while(t)
{
cin>>n;
superPrimes(n);
t--;
}
return 0;
}
```